Bilinear Programming Formulations for Weber Problems with Continuous and Network Distances
نویسندگان
چکیده
Abstract While travel cost in urban areas is generally best modeled using network distances, continuous distance measures are mostly used for location problems in rural environments. Combining both is not only interesting from a modeling perspective, but has also computational advantages since it combines reduced storage requirements for the network data with a high accuracy of the approximated distances. In this paper, Weber problems with combined distance measures are discussed. If continuous distances are measured using block norm distances, the resulting Weber problems can be represented by bilinear programming formulations. Theoretical properties of this model are discussed, and two possible solution strategies are suggested.
منابع مشابه
Single Facility Goal Location Problems with Symmetric and Asymmetric Penalty Functions
Location theory is an interstice field of optimization and operations research. In the classic location models, the goal is finding the location of one or more facilities such that some criteria such as transportation cost, the sum of distances passed by clients, total service time, and cost of servicing are minimized. The goal Weber location problem is a special case of location mode...
متن کاملSolving Mixed Integer Bilinear Problems Using MILP Formulations
In this paper, we examine a mixed integer linear programming (MILP) reformulation for mixed integer bilinear problems where each bilinear term involves the product of a nonnegative integer variable and a nonnegative continuous variable. This reformulation is obtained by first replacing a general integer variable with its binary expansion and then using McCormick envelopes to linearize the resul...
متن کاملContinuous quadratic programming formulations of optimization problems on graphs
Four NP-hard optimization problems on graphs are studied: The vertex separator problem, the edge separator problem, the maximum clique problem, and the maximum independent set problem. We show that the vertex separator problem is equivalent to a continuous bilinear quadratic program. This continuous formulation is compared to known continuous quadratic programming formulations for the edge sepa...
متن کاملBilinear Programming
f(x, y) = a x + x Qy + b y, where a, x ∈ R, b, y ∈ R, and Q is a matrix of dimension n ×m. It is easy to see that bilinear functions compose a subclass of quadratic functions. We refer to optimization problems with bilinear objective and/or constraints as bilinear problems, and they can be viewed as a subclass of quadratic programming. Bilinear programming has various applications in constraine...
متن کامل$n$-factorization Property of Bilinear Mappings
In this paper, we define a new concept of factorization for a bounded bilinear mapping $f:Xtimes Yto Z$, depended on a natural number $n$ and a cardinal number $kappa$; which is called $n$-factorization property of level $kappa$. Then we study the relation between $n$-factorization property of level $kappa$ for $X^*$ with respect to $f$ and automatically boundedness and $w^*$-$w^*$-continuity...
متن کامل